Robust Local Polynomial Regression for Dependent Data
نویسندگان
چکیده
Let (Xj , Yj) n j=1 be a realization of a bivariate jointly strictly stationary process. We consider a robust estimator of the regression function m(x) = E(Y |X = x) by using local polynomial regression techniques. The estimator is a local M-estimator weighted by a kernel function. Under mixing conditions satisfied by many time series models, together with other appropriate conditions, consistency and asymptotic normality results are established. One-step local M-estimators are introduced to reduce computational burden. In addition, we give a data-driven choice for minimizing the scale factor involving the ψ-function in the asymptotic covariance expression, by drawing a parallel with the class of Huber’s ψ-functions. The method is illustrated via two examples.
منابع مشابه
Robust Fixed-order Gain-scheduling Autopilot Design using State-space Stability-Preserving Interpolation
In this paper, a robust autopilot is proposed using stable interpolation based on Youla parameterization. The most important condition of stable interpolation between local controllers is the preservation of stability so that each local controller can ensure stability for an open neighborhood around a nominal point. The proposed design used fixed-order robust controller with parameter-dependent...
متن کاملDelay-dependent stability for transparent bilateral teleoperation system: an LMI approach
There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملThe Conditional Breakdown Properties of Robust Local Polynomial Estimators
Nonparametric regression techniques provide an e ective way of identifying and examining structure in regression data The standard approaches to nonparametric regression such as local polynomial and smoothing spline estimators are sensitive to unusual observations and alternatives designed to be resistant to such observations have been proposed as a solution Unfortunately there has been little ...
متن کاملLiterature Review for Local Polynomial Regression
This paper discusses key results from the literature in the field of local polynomial regression. Local polynomial regression (LPR) is a nonparametric technique for smoothing scatter plots and modeling functions. For each point, x0, a low-order polynomial WLS regression is fit using only points in some “neighborhood” of x0. The result is a smooth function over the support of the data. LPR has g...
متن کامل